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based on any other fault-structure for the crystal 
would agree as well with the observations. 

Finally we wish t o  record our appreciation of the 
help and advice we have had from Prof. Bragg and 
Dr Perutz. 
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Formulae for the intensity distribution in reciprocal space, and for the integrated intensity and 
integral breadth of a diffraction maximum, are given for a h.c.-p, structure containing a random 
distribution of deformation faults. 

1. In troduc t ion  

The effect of faults in the stacking of the close-packed 
layers of the f.-c.c and h.c.-p, lattices has been dis- 
cussed by several authors, especially Wilson (1942, 
1949) and Paterson (1952). The diffraction effects 
depend on the origin of the faults; in particular a 
distinction has been drawn between 'growth' and 
'deformation' faulting (Barrett, 1952). More complex 
stacking sequences ('extrinsic faults') are also possible 
(Frank & Nicholas, 1953), but probably have higher 
energy. 

The faulting parameter, c~, is defined as the frac- 
tional area of all atomic close-packed planes which are 
faulted. The dissociation of lattice dislocations in close- 
packed planes gives some faults even in well annealed 
crystals, but these are insufficient to produce observ- 
able diffraction effects. Extensive faulting may be 
produced by mechanical deformation, martensitic 
transformation and (possibly) atomic growth. Con- 
sideration of the first two of these processes suggests 
that  only deformation faults in both lattices, and 
h.c.-p, growth faults are likely to be important in 
practice. Formulae have previously been given for 
growth faulting in h.c.-p, lattices and for both types 
of faulting in f.-c.c, lattices. In this note, we give the 
corresponding formulae for h.c.-p, deformation fault- 
ing. 

2. In tens i ty  d i s t r i b u t i o n  in  rec iproca l  space  

We use the same notation as Paterson (1952), except 
that  c~ is the h.c.-p, faulting parameter, and our vector 
a a is equal to the interplanar translation, so that  the 
factor ~h 3 in his expressions is replaced by h 3. The 
intensity distribution for H - K  = 3 N + l  may then be 
written 

I(HKha) 
o o  

= C[J0+ ~ {Ja exp 27dmha+(J,,, exp 2~timha)*}] 
1 

and 
Jm = f2[P°m-½ (P~m+Pm) + iV3.½. (P~+-~) ]  - 

A difference equation for the probabilities Pm may 
be obtained by considering possible sequences of 
planes in a manner similar to that  used by Paterson. 
This equation is 

p°m-p°=u(1-30¢+3~2 ) = ~x--(x 2 

and has solution 
2Q-1 m 2Q+l 

po = t + _ _ ~ e  Q + _ ~ _ ( _ e ) ~ ,  

where Q = +(1-3o~+3~9) ½ and is always real. 
Similarly 

1 - 2 ~ m  1+2~ 
P+m = P~, = ~+ 1-~Q 12e (__~)m. 

From this we find 
[2Q-1 ( , 2 e + l  J==pe=L=X~Q+-1) - - ~  ] , 

and the intensity distribution in reciprocal space is 
represented by 

I(HKha) = f2C l + ~ Q m / 2 Q - 1  ( 2Q cos 2~rmha 

+ - - ~ -  cos 2~m(h a + ½) 

= p c  [ (2e-1)(1-e ~) 
[4~(1-2Q cos 2ztha+~ ~) 

(2e+ I) ( l - e  ~) ] 
+ 4 ~ ( 1 - ~ e s ~ ( h - - j ½ ) + ~ ' ) j  " (1) 
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The first part  of this expression has a peak value of 
( 2q - l ) (1  ÷Q)/4q(1-q) when h 3 - L (an integer), and 
the second part  a peak value of (2Q+1)(1+~)/4Q(1-~) 
when h a = L+½. These maxima are in the positions 
of the maxima from a perfect h.c.-p, lattice, so there 
is no shift of peak position whatever the value of ~. 

If we suppose the crystal to be a small parallel- 
epiped having M 1, M2, M 3 unit cells in the directions 
of a 1,a~,a 3, the total  number of atoms is M =  
M1M2M3, and C = M2/M3 . The integrated intensity 
obtained from any region of reciprocal space round 
a maximum is 

T = Ihllh~Ih3I(hlhph3)dhldh~dha 

_ 1 
I (HKha)dha . 

M1M2 ~ha 

The integrated intensities of the two parts of equation 
(1) may  thus be written 

~z+½ (2Q- I) (I _Q2) 
Te = M p  JL-½ 4 ~ ( 1 - - 2 ~ o s 2 ~ 3 + @  2) 

T O = Mf~ 2~÷1 
4~ " 

dh a = M p  2~ - 1 
4~ 

For ~ -  0 or ~ = 1, these have the values Mr2~4, 
3Mf2/4 characteristic of the perfect h.c.-p, lattice. As 
c~ increases intensity is transferred from the lines with 
maxima at  h 3 = L to the others, until at  c~ = ½ the 
first part  of the intensity expression becomes zero, 
and there is only one set of maxima. 

The integral breadth of a line is defined by  

i I (HKh3) dh3 
B = "  

I (HKh3) Max. 

and we find for both sets of lines tha t  

3. M e a s u r e m e n t  of 

F.-c.c. crystals containing either deformation or growth 
stacking faults give X-ray diffraction photographs 
which show a shift in the position of the maxima when 
compared with the unfaulted crystal. This method 
provides the most convenient way of detecting the 
presence of such faults, but  is not available for h.c.-p. 
materials, where J~  is always real, and the peak 
positions are unaffected. The value of ~ may  then be 
determined by measurement of integrated intensities, 
integral breadths or line shapes. The latter  method, 
developed by Warren & Averbach (1952), is probably 
the best way of obtaining the maximum information 
from any one line. I ts  use becomes very tedious, 
however, when a large number of specimens have to 
be examined, and for ordinary work the measurement 
of line breadths seems to be almost as accurate. 

Comparison of the above results with those previously 
obtained for growth faulting shows tha t  while the 
effects are similar, the type of faulting can readily 
be determined. In  both cases intensity is transferred 
from the even lines to the odd lines, until at  o~ = ½ 
only the odd lines remain and have integral breadth ~. 
In  growth faulting, however, the ratio Bo/B e -= 
exactly, whereas in deformation faulting B o --Be. 
A further difference lies in the rate at  which the 
intensity is transferred. For growth faulting, To[T e -- 
3"35 for ~ = 0.3, whereas for deformation faulting 
To/T e - -3 .82  for ~ = 0 . 1  and 10-23 for ~ - - 0 . 3 .  
Providing the diffraction broadening due to faulting 
can be satisfactorily separated from tha t  due to other 
causes, it  is therefore possible to determine the pre- 
dominant type of faulting and measure its frequency 
quite accurately. 

I should like to thank Dr W. Hume-Rothery,  F.R.S., 
for laboratory facilities and for his interest in this work, 
which was carried out during my  tenure of a Pressed 
Steel Research Fellowship at  Oxford. 

B 1 -Q 2 - 3 c ~ ( 1 - ~ ) - 2 ( 1 - 3 ~ + 3 ~ )  ½ 
I-}-Q 3o~(l--~x) 

I t  is noteworthy tha t  the integral breadths of the lines 
in a deformation-faulted h.c.-p, crystal are identical 
with those in a similarly faulted f.-c.c, crystal (Pater- 
son, 1952). The maximum breadth (B = ½) is obtained 

at ~ = ½, when 0nly the h3 = L+½ components re- 
main. 

References 

BAa~R~.TT, C.S. (1952). Imperfections in Nearly Perfect 
Crystals, chap. 3. New York: Wiley. 

FRAY-K, F.C. & NICHOLAS, J . F .  (1953). Phil. Mag. (8), 
44, 1213. 

PATERSO~¢, M.S. (1952). J. Appl. Phys. 23, 805. 
WARRE~, B.E.  & AVERBACH, B.L.  (1952). J. Appl. 

Phys. 23~ 497, 
WILSO1% A. J. C. (1942). Proc. Roy. Soc. A, 180, 287. 
WrLSO~, A. J. C. (I949). X-ray Optics. London: Methuen. 


